Phase Space

\(N\) body decay phase space can be defined as

\[d \Phi(P;p_1,\cdots,p_n) = (2\pi)^4\delta^4(P - \sum {p_i}) \prod \theta(p^0)2\pi\delta(p_i^2 - m_i^2)\frac{d^4 p_i}{(2\pi)^{4}}\]

or integrate \(p^0\) as

\[d \Phi(P;p_1,\cdots,p_n) = (2\pi)^4\delta^4(P - \sum {p_i}) \prod \frac{1}{2E_i}\frac{d^3 \vec{p_i}}{(2\pi)^{3}}\]

by using the property of \(\delta\)-function,

\[\delta(f(x)) = \sum_{i}\frac{\delta(x-x_i)}{|f'(x_i)|}\]

where \(x_i\) is the root of \(f(x)=0\).

Phase space has the follow chain rule,

\[\begin{split}d \Phi(P;p_1,\cdots,p_n) =& (2\pi)^4\delta^4(P - \sum {p_i}) \prod \frac{1}{2E_i}\frac{d^3 \vec{p_i}}{(2\pi)^{3}} \\ =& (2\pi)^4\delta^4(P - \sum_{i=0}^{m} {p_i} -q) \prod_{i=0}^{m} \frac{1}{2E_i}\frac{d^3 \vec{p_i}}{(2\pi)^{3}} \prod_{i=m+1}^{n} \frac{1}{2E_i}\frac{d^3 \vec{p_i}}{(2\pi)^{3}}\\ & (2\pi)^4\delta^4(q - \sum_{i=m+1}^{n} {p_i})\frac{d^4 q}{(2\pi)^4}\delta(q^2 - (\sum_{i=m+1}^{n} {p_i})^2)d q^2 \\ =& d\Phi(P;p_1,\cdots,p_m,q)\frac{d q^2}{2\pi}d\Phi(q;p_{m+1},\cdots p_{n}) \label{chain_decay},\end{split}\]

where \(q = \sum_{i=m+1}^{n}p_i\) is the invariant mass of particles \(m+1,\cdots,n\).

The two body decay is simple in the center mass frame \(P=(M,0,0,0)\),

\[\begin{split}d \Phi(P;p_1,p_2) =& (2\pi)^4\delta^4(P - p_1 - p_2) \frac{1}{2E_1}\frac{d^3 \vec{p_1}}{(2\pi)^{3}} \frac{1}{2E_2}\frac{d^3 \vec{p_2}}{(2\pi)^{3}} \\ =& 2\pi\delta(M - E_1 - E_2) \frac{1}{2E_1 }\frac{1}{2E_2}\frac{d^3 \vec{p_2}}{(2\pi)^{3}} \\ =& 2\pi\delta(M - \sqrt{|\vec{p}|^2 + m_1^2} - \sqrt{|\vec{p}|^2 + m_2^2}) \frac{1}{2E_1 }\frac{|\vec{p}|^2}{2E_2}\frac{d |\vec{p}| d \Omega}{(2\pi)^{3}} \\ =& \frac{|\vec{p}|}{16 \pi^2 M} d \Omega\end{split}\]

where \(d \Omega = d(\cos\theta)d\varphi\) and

\[E_1 = \frac{M^2 + m_1^2 - m_2^2 }{2M} , E_1 = \frac{M^2 - m_1^2 + m_2^2 }{2M}\]
\[|\vec{p}| = \frac{\sqrt{(M^2 - (m_1 + m_2)^2)(M^2 -(m_1 - m_2)^2)}}{2M}\]

The three body decay in the center mass frame \(P=(M,0,0,0),q^\star=(m_{23},0,0,0)\),

\[\begin{split}d \Phi(P;p_1,p_2,p_3) =& d\Phi(P;p_1,q) d\Phi(q^\star;p_2^\star,p_3^\star) \frac{d q^2}{2\pi} \\ =& \frac{|\vec{p_1}||\vec{p_2^\star}|}{(2\pi)^5 16 M m_{23}} d m_{23}^2 d \Omega_1 d\Omega_2^\star \\ =& \frac{|\vec{p_1}||\vec{p_2^\star}|}{(2\pi)^5 8 M} d m_{23} d \Omega_1 d\Omega_2^\star\end{split}\]

The n body decay in the center mass frame \(P=(M,0,0,0)\),

\[\begin{split}d \Phi(P;p_1,\cdots,p_n) =& d\Phi(P;p_1,q_1)\prod_{i=1}^{n-2} \frac{d q_{i}^2}{2\pi}d\Phi(q_{i},p_{i+1},p_{i+2})\\ =& \frac{1}{2^{2n-2}(2\pi)^{3n-4}}\frac{|\vec{p_{1}}|}{M} d\Omega_{1} \prod_{i=1}^{n-2} \frac{|\vec{p_{i+1}^\star}|}{M_{i}} d M_{i}^2 d\Omega_{i+1}^\star \\ =& \frac{1}{2^n (2\pi)^{3n-4}}\frac{|\vec{p_{1}}|}{M} d\Omega_{1} \prod_{i=1}^{n-2} |\vec{p_{i+1}^\star}| d M_{i} d\Omega_{i+1}^\star\end{split}\]

where

\[M_{i}^2 = (\sum_{j > i} p_j)^2 ,\ |\vec{p_{i}^\star}| = \frac{\sqrt{(M_i^2 - (M_{i+1} + m_{i+1})^2)(M_i^2 - (M_{i+1} - m_{i+1})^2)}}{2 M_i}\]

with those limit

\[\sum_{j>i} m_{j} < M_{i+1} + m_{i+1} < M_{i} < M_{i-1} - m_{i} < M - \sum_{j \leq i } m_i\]

Phase Space Generator

For n body phase space

\[d \Phi(P;p_1,\cdots,p_n) = \frac{1}{2^n (2\pi)^{3n-4}} \left( \frac{1}{M}\prod_{i=0}^{n-2}|\vec{p_{i+1}^\star}| \right)\prod_{i=1}^{n-2} d M_{i} \prod_{i=0}^{n-2} d\Omega_{i+1}^\star,\]

take a weeker condition

\[\sum_{j>i} m_{j} < M_{i} < M - \sum_{j \leq i } m_j,\]

has the simple limit at the factor term

\[\begin{split}\frac{1}{M}\prod_{i=0}^{n-2}|\vec{p_{i+1}^\star}| =& \frac{1}{M}\prod_{i=0}^{n-2}q(M_i,M_{i+1},m_{i+1}) \\ <& \frac{1}{M}\prod_{i=0}^{n-2}q(max(M_i),min(M_{i+1}),m_{i+1})\end{split}\]
    1. Generate \(M_i\) with the factor

    1. Generate \(d\Omega = d\cos\theta d\varphi\)

    1. boost \(p^\star=(\sqrt{|\vec{p*}|^2 + m^2} ,|\vec{p^\star}|\cos\theta\cos\varphi,|\vec{p^\star}|\sin\theta\sin\varphi,|\vec{p^\star}|\cos\theta,)\) to a same farme.